![](https://static.wixstatic.com/media/2465a22a212e41cd96a05e3e3fe5adc4.jpg/v1/fill/w_1920,h_1164,al_c,q_90,usm_0.66_1.00_0.01,enc_avif,quality_auto/2465a22a212e41cd96a05e3e3fe5adc4.jpg)
Dr. Maruyama, Atsushi
![](https://static.wixstatic.com/media/59cea9_8100e9c5374d4f53a6724919c1243de7.jpg/v1/fill/w_255,h_273,al_c,lg_1,q_80,enc_avif,quality_auto/59cea9_8100e9c5374d4f53a6724919c1243de7.jpg)
Presentation day
Wednesday 1:40 AM
TITLE
Inter-polyelectrolyte nanoassemly to engineer DNA, peptides and lipids
Abstract
Proper folding and assembling are key processes for biopolymers to exhibit their inherent
biological activities. Artificial materials that can manipulate biopolymer folding and asssemling would have
variety of applications in biomedical fields. We have designed ionic graft copolymers consisting of a polyion
backbone and hydrophilic graft chains to engineer folding and assembling of biopolymers, such as DNA
and peptides, having opposite ionic charges. The cationic copolymers formed soluble inter-polyelectrolyte
complex with DNA and acidic peptides.
The copolymers significantly facilitate DNA assembly including DNA duplex, triplex and quadruplex
formations. The activity of the copolymer was applied to DNA nanotechnology including genotyping
methods. Recently, we showed that the copolymers enhanced catalytic functions of deoxyribozymes
(DNAzyme) having ribonuclease activity. The copolymer facilitated the turnover step and not chemically
catalytic step in a reaction cycle of DNAzyme.
An acidic peptide having membrane-disrupting activity was also engineered by the copolymer. The
copolymer triggered random-to-helix transition of the peptide. The copolymer/peptide mixture showed
stronger membrane disrupting activity than peptide alone. Microscopic observation revealed that the
peptide/copolymer mixture induced vesicle-to-sheet transition of lipid bilayers. Reversible and control of
vesicle-sheet transition was achieved by controlling activity of the peptide/copolymer mixture.
CV
Education:
1982 B. S. Tokyo University of Science
1988 PhD Tokyo University of Science
Academic appointments:
1986-1990 Research Associate, Department of Chemistry, Sophia University, Japan
1990-2000 Assistant Professor, Department of Biomolecular Engineering, Tokyo Institute of Technology, Japan
2000-2004 Associate Professor, Department of Biomolecular Engineering, Tokyo Institute of Technology, Japan
2004-2013 Professor, Institute for Materials Chemistry and Engineering, Kyushu University, Japan
2013-present Professor, Department of Biomolecular Engineering, Tokyo Institute of Technology
Research project directed
2001-2004 Investigator, Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST).
2004-2010 Principal investigator, Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST)
2006-2011 Principal investigator, A3 foresight program, Japanese Society for the Promotion of Science (JSPS)
2010-2012 Principal investigator, Development of Systems and Technology for Advanced Measurement and Analysis, Japan Science and Technoogy Agency (JST)
Literatures
-
N. Shimada, H. Kinoshita, S, Tokunaga, T. Umegae, N. Kume, W. Sakamoto, A. Maruyama, Inter-polyelectrolyte nano-assembly induces folding and activation of functional peptides, J. Controlled Release, Accepted (20151001).
-
K. Kawai, K. Higashiguchi, A. Maruyamad, T. Majima, DNA microenvironment monitored by controlling redox blinking, BioPhysBio accepted, 2015, DOI: 10.1002/cphc.201500793
-
H. Lee, Y. Hoshino, Y. Wada, Y. Arata, A. Maruyama, Y. Miura, Minimization of synthetic polymer ligands for specific recognition and neutralization of a toxic peptide, J. Am. Chem. Soc., Aug. 2015, DOI: 10.1021/jacs.5b05259
-
A. Fujihara, N. Shimada, A. Maruyama, K. Ishihara, S. Yusa, Preparation of upper critical solution temperature (UCST) responsive diblock copolymers bearing pendant ureido groups and their micelle formation behavior in water, Soft Matter, Accepted, DOI: 10.1039/c5sm00499c
-
J. Gao, N. Shimada, A. Maruyama, MNAzyme-catalysed nucleic acid detection enhanced by a cationic copolymer, Biomater. Sci, 3, 716-720 (Feb 23, 2015), DOI: 10.1039/C4BM00449C
-
K. Kawai, A. Maruyama, Triple helix conformation-specific blinking of Cy3 in DNA, Chem. Commun., 51, 4861-4864, 2015, DOI: 10.1039/C5CC00607D
-
J. Gao, N. Shimada, A. Maruyama, Enhancement of deoxyribozyme activity by cationic copolymers, Biomater. Sci., 3, 308-316 (2015), DOI: 10.1039/C4BM00256C
-
N. Shimada, S. Kidoaki, A. Maruyama, Smart hydrogels exhibiting UCST-type volume changes under physiologically relevant conditions, RSC Advances, 4, 52346-52348, 2014, Oct. DOI: 10.1039/C4RA10612A
-
N. Shimada, W. Song, A. Maruyama, DNA strand exchange reaction activated by cationic comb-type copolymers having ureido groups, Biomater. Sci., 2, 1480-1485 (2014), Oct., DOI: 10.1039/C4BM00207E
-
D. Miyoshi, Y. M. Ueda, N. Shimada, S. I. Nakano, N. Sugimoto, A. Maruyama, Drastic stabilization of parallel DNA hybridizations by a polylysine omb-type copolymer with hydrophilic graft chain, ChemMedChem., 9, 2156-63 (2014) Sep., doi: 10.1002/cmdc.201402157.
-
K. Kawai, T. Koshino, A. Maruyama, T. Majima, Blinking Triggered by The change in the solvent accessibility of a fluorescent molecule, Chem. Commun., 50, 10478-81 (2014) Aug, doi: 10.1039/c4cc00377b.
-
R. Arivazhagan, M.Endo, K. Hidaka, N. Shimada, A. Maruyama, H. Sugiyama, Lock-and-key mechanism for the controllable fabrication of DNA origami structures, Chem. Commun., 50, 8743-6(2014), Aug, DOI:10.1039/C4CC02244K.
-
S. Yusa, M. Morihara, K. Nakai, S. Fujii, Y. Nakamura, A. Maruyama, N. Shimada, Thermo-responsive liquid marbles, Polym. J., 46, 145-148 (2014). DOI:10.1038/pj.2013.84
-
A. Maruyama, N. Sonda, K. Yamasaki, S. Kidoaki, N. Shimada, M. Maeshiro, M. Miyazaki, Cationic comb-type copolymer excludes intercalating dye from DNA without inducing DNA condensation, Curr. Nanosci., 10, 185-188 (2014) DOI: 10.2174/1573413709666131129000024.
-
H. Saneyoshi, N. Yoshida, N. Shimada, A. Maruyama, Y. Ito, H. Abe, Polycation-assisted DNA detection by reduction triggered fluorescence probe towards point-of-care testing, Bioorg. Med. Chem., 23, 6851-6853 (2013). Dec. DOI:10.1016/j.bmcl.2013.10.005
-
J. Chen, H. Tian, X. Dong, Z. Guo, Z. Jiao, F. Li, A. Kano, A. Maruyama, X. Chen, Effective tumor treatment by VEGF siRNA complexed with hydrophobic poly(amino acid)-modified polyethylenimine, Macromol. Biosci., 13, 1438-46 (2013). DOI: 10.1002/mabi.201300211.
-
K. Kawai, T. Majima, A. Maruyama, Detection of single-nucleotide variations by monitoring the blinking of fluorescence induced by charge transfer in DNA, ChemBioChem., 14, 1430-1433, 2013, Aug., doi: 10.1002/cbic.201300380
-
N. Shimada, M. Nakayama, A Kano, A Maruyama, Design of UCST Polymers for Chilling Capture of Proteins, Biomacromolecules, 14, 1452-1457 (2013), May., DOI: 10.1021/bm400120y
-
A. Kano, Y. Taniwaki, I. Nakamura, N. Shimada, K. Moriyama, A. Maruyama, Tumor delivery of Photofrin® by PLL-g-PEG for photodynamic therapy, J. Controlled Rel., 167, 315-321 (2013), DOI: 10.1016/j.jconrel.2013.02.016.
-
M. Nishihara, K. Imato, A. Irie, T. Kanehara, A. Kano, A. Maruyama, A. Takahara, H. Otsuka, Reversibly Cross-linked Polymeric Micelles Formed by Autonomously Exchangeable Dynamic Covalent Bonds, Chem. Lett.,42, 377-379 (2013), DOI:10.1246/cl.2013.377.
-
J. Du, L. Wu, N. Shimada, A. Kano, A. Maruyama, Polyelectrolyte-Assisted Transconformation of Stem-loop DNA, Chem. Commun., 49, 475-477 (2013). DOI: 10.1039/C2CC37139A
-
J. Michaelis, A. Maruyama, O. Seitz, Promoting strand exchange in a DNA templated transfer reaction, Chem. Commun., 49, 618-620 (2013). DOI: 10.1039/C2CC36162K